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Abstract

Predictions of turbulent flow and convection in round tubes, channels and concentric circular annuli based on a cor-
relating equation for the fraction of the shear stress due to turbulence have previously been shown to be within the
scatter of the best experimental data. However, the sufficiency of this agreement has been questioned because of the
scatter and limitations in scope of that data. As a supplementary test, the sensitivity of the predictions to each of
the numerical empiricisms and arbitrary functions of the model has been investigated. On the whole, the uncertainties
in these values and functions are not found to influence the predictions significantly.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Churchill and coworkers utilized the fraction of the
local shear stress due to turbulence as a variable in the
time-averaged differential momentum balance and there-
by avoided the imposition of a heuristic quantity such as
the eddy diffusivity. They then devised an algebraic
model for this quantity in terms of a power-mean of the-
oretical asymptotes with a mix of theoretical and empir-
ical coefficients and an empirical combining exponent.
This algebraic model, which incorporates less empiricism
than any prior model, including those of j–e and LES,
was used to compute the velocity distribution and
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mixed-mean rate of flow in round tubes, parallel-plate
channels, and concentric circular annuli. The latter
geometry invokes a slight additional empiricism in the
form of correlating equations for the location of the max-
imum in the velocity and the zero in the total shear stress.
The predictions by this model of the time-averaged

velocity and the mixed-mean velocity, which is equiva-
lent to the friction factor, were found to agree well with
the best experimental data for all three geometries. For
round tubes, the predictions are in almost perfect agree-
ment with the very precise experimental data of Zaga-
rola [18] but that agreement is to some degree forced
in that two of the empirical constants of the model were
based on these very data. The good agreement that was
found for the predictions with the experimental data for
parallel-plate channels and annuli is free of such forcing
but is at the same time less convincing because of
the limited scope, the great scatter, and the obvious
ed.
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Nomenclature

a radius (m)
a1 inner radius of annulus (m)
a2 outer radius of annulus (m)
a0 radius of zero shear stress in an annulus (m)
amax radius of maximum in velocity in an annulus

(m)
a+ dimensionless radius [a(swq)

1/2/l]
A arbitrary constant in semi-logarithmic

expression for velocity
b+ dimensionless half-width [b(swq)

1/2/l]
b half-width of parallel-plate channel (m)
c specific heat capacity (J/kg K)
f Fanning friction factor ½2sw=qu2m�
j radial heat flux density (W/m2)
jw radial heat flux density at wall (W/m2)
k coefficient in semi-logarithmic expression

for velocity
‘ mixing length (m)
‘+ dimensionless mixing length [‘(swq)

1/2/l]
n arbitrary combining exponent
Nu Nusselt number [2h(a2 � a1)/k]
Pr Prandtl number [cl/k]
Prt turbulent Prandtl number [clt/kt]
PrT total Prandtl number [c(l + lt)/(k + kt)]
R radius ratio [1 � (y/a)]
Re Reynolds number [2(a1 � a2)um/l]
T time-averaged temperature (K)
T+ dimensionless temperature [k(qsw)

1/2

(Tw � T)/ljw]
Tm mixed-mean temperature (K)
T 0 fluctuating component of temperature (K)
T 0v0 time-average of product of fluctuating

temperature and velocity (K m/s)

ðT 0v0Þþþ local fractional of radial heat flux density
due to turbulence ½qcT 0v0=j�

u axial component of time-averaged velocity
(m/s)

u+ dimensionless axial velocity [u(q/sw)
1/2]

um mixed-mean axial velocity (m/s)
u0 fluctuating component of axial velocity (m/s)
u0v0 time-average of product of fluctuating com-

ponents of velocity (m2/s2)
ðu0v0Þþþ local fraction of shear stress due to turbu-

lence ½�qu0v0=s�
ðu0v0Þþ dimensionless shear stress ½�qu0v0=sw�
v component of time-averaged velocity nor-

mal to wall (m/s)
v0 fluctuating component of velocity normal to

the wall (m/s)
y distance from wall (m)
y+ dimensionless distance fromwall [y(qsw)

1/2/l]
Z 1 � (y/b)

Greek symbols

a arbitrary coefficient
c [(j/jw1)(sw1/s) � 1]
e rate of dissipation of turbulence (m2/s3)
j kinetic energy of turbulence (m2/s2)
k thermal conductivity (W/m K)
l dynamic viscosity (Pa s)
lt eddy dynamic viscosity (Pa s)
n ½1� ðT 0v0Þþþ�=½1� ðu0v0Þþþ�
q specific density (kg/m3)
s shear stress (Pa)
sw shear stress at wall (Pa)

S.W. Churchill et al. / International Journal of Heat and Mass Transfer 48 (2005) 5488–5503 5489
discrepancies between different sets of data, particularly
for annuli. Because of the use of irregular values of the
added parameter, namely the aspect ratio, by different
experimenters, the comparisons for annuli were made
with the predictions of correlating equations for the
computed values rather than directly with the computed
values, which were for regular values of the aspect ratio.
This interposition provides a more severe rather than a
less critical test.
This approach was extended to forced convection by

utilizing the local heat flux density due to turbulence as a
variable in the time-averaged differential energy balance.
The thermal modeling encompassed round tubes with
both uniform and isothermal heating, and parallel-plate
channels and annuli with all combinations of uniform
and isothermal heating and cooling on the two surfaces.
The only empiricism beyond that of the correlating
equation for turbulent shear stress is that of the correlat-
ing equation for the turbulent Prandtl number, which
bears a one-to-one correspondence to the turbulent heat
flux density. All in all, the algebraic modeling for turbu-
lent convection incorporates less empiricism than that of
any prior modeling.
The predictions of the Nusselt number by the

algebraic thermal model were found to be in better
agreement with the experimental data for all three geo-
metries, all values of the Prandtl number, and all modes
of heating than any prior ones, even those for a single
geometry and condition. Because of the irregular values
of the two thermal parameters in the various sets of
experiments, the comparisons were with correlating
equations for the computed values rather than directly.
Just as with the aspect ratio of annuli, this interposition
increases rather than decreases the criticality of the com-
parisons. The agreement, although very good overall,
is not totally convincing because of the even greater
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scatter, the greater differences between various sets, and
the lesser scope of the data.
The inability to evaluate the numerical uncertainties

of the new modeling by comparisons with experimental
data because of their limitations in precision, accuracy,
and scope led to the analysis presented herein, which
has the objective of identifying each empirical or arbi-
trary element in the modeling and of assessing the asso-
ciated quantitative uncertainty of the predictions. This
analysis has three aspects. The first aspect consists of a
detailed description and critique of the algebraic expres-
sions for the turbulent shear stress and the turbulent
heat flux density that are inherent in the modeling of tur-
bulent flow and convection. These expressions have been
described and critiqued previously, but only in segments
as they evolved, not as a whole. The second aspect con-
sists of the identification of the individual empiricisms
and arbitrary functional elements of the fluid-mechani-
cal and thermal models, including the particular ones
for each separate geometry. The third aspect consists
of the numerical evaluation of the sensitivity of the
numerical prediction of turbulent flow and convection
to each of these empiricisms and arbitrary elements.
The questions that this analysis is intended to answer

include the following. Is the agreement of the predictions
of the new modeling with experimental data a fortuitous
result of their scatter? Are there any aspects of the mod-
eling that are not theoretically sound? How sensitive are
the predictions of the new models to the numerical val-
ues of their coefficients and exponents as well as to the
functionality of the various elements of their structure?
Will future experimental data or the results of DNS

for extended conditions require the tweaking of the
empirical coefficients and/or require modification of
their functional forms? These questions are not rhetori-
cal. Their answers may not only characterize the reliabil-
ity of the present predictive models, but may also
identify the nature and ranges of the future experiments
and/or calculations that are most critical and essential.
2. Prior models

Most models for the prediction of fully developed
turbulent flow and forced convection in channels are
based on the time-averaged equations of conservation.
The time-averaging greatly simplifies these equations
but at the expense of generating additional unknown
dependent variables such as u0v0 and T 0v0. Most of the
modeling of turbulent flow that starts from the time-
averaged equation for the conservation of momentum
involves the introduction of heuristic quantities such as
the eddy viscosity of Boussinesq [1] and the mixing-
length of Prandtl [2] for u0v0. For turbulent flow in chan-
nels, both empirical expressions and arbitrary predictive
models have in turn been proposed for the eddy viscosity
and the mixing length. Early examples of predictive
models are those of Deissler [3,4] and of von Kármán
[5]. Later predictive models for the eddy viscosity are
epitomized by j–e model of Kolmogorov [6], Prandtl
[7], and Batchelor [8]. The kinetic energy of turbulence
jand rate of dissipation of turbulence ein this model
have physical identities, but the equations devised by
Launder and Spalding [9] and others for their prediction
are arbitrary. The j–e-u0v0 model of Hanjalić and Laun-
der [10] avoids the introduction of a heuristic quantity
but requires arbitrary predictive equations for each of
these three quantities. The corresponding models for
turbulent convection have generally consisted of simple
modifications of those for flow.
When DNS (direct numerical simulation), which

avoids time-averaging and is virtually free of empiricism,
was introduced some 20 years ago it seemed to have
unlimited promise. However, its applications for both
flow and convection are still essentially limited to planar
flows and to rates of flow barely above the lower limit
for fully developed turbulence. LES (large-eddy simula-
tion) relaxes the restriction on the rate of flow by utiliz-
ing DNS only for the fully turbulent core, but requires
the use of the j–e model with arbitrary wall functions
or the equivalent for the region near the wall.
3. The new model for flow

3.1. Basic formulations for a round tube

The new modeling is based on the introduction by
Churchill [11] of the following dimensionless variable
to represent the radial transport of momentum by the
turbulent fluctuations:

ðu0v0Þþþ ¼ �qðu0v0Þ
s

ð1Þ

Here, s is the local total shear stress, and ðu0v0Þþþ may be
interpreted as the fraction of the shear stress due to the
turbulent fluctuations. The time-averaged equation for
the conservation of momentum in the fully developed
flow of a fluid with invariant viscosity and density in a
round tube may be expressed in terms of this new vari-
able as follows:

½1� ðyþ=aþÞ�½1� ðu0v0Þþþ� ¼ du
þ

dyþ
ð2Þ

Here, u, y, and a are scaled in terms of conventional wall-
variables, that is as u+ 	 u(q/sw)

1/2, y+ 	 y(qsw)
1/2/l,

and a+ 	 y(qsw)
1/2/l. Eq. (2) may be re-expressed in

terms of R = 1 � (y+/a+) and integrated formally from
u+ = 0 at the wall (R = 1) to obtain

uþ ¼ aþ

2

Z 1

R2
½1� ðu0v0Þþþ�dR2 ð3Þ
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The local, time-averaged, dimensionless velocity, u+, as
given by Eq. (3), may be integrated by parts over the
circular cross-section to obtain the following single
integral for the dimensionless mixed-mean velocity,
uþm 	 umðq=swÞ1=2, and its counterpart, the Fanning fric-
tion factor, f ¼ 2sw=qu2m:

2

f

� �1=2
	 uþm 	

Z 1

0

udR2

¼ aþ

4

Z 1

0

½1� ðu0v0Þþþ�dR4 ð4Þ

Eqs. (2)–(4) are exact, but empiricism is introduced
unavoidably by the correlative equation that is utilized
for ðu0v0Þþþ.

3.2. An algebraic model for the turbulent shear stress

in a round tube

The original correlative equation devised by Chur-
chill and Chan [12] for the turbulent shear stress in the
dimensionless form of ðu0v0Þþ 	 �qðu0v0Þ=sw ¼ ðu0v0Þþþ=
½1� ðyþ=aþÞ� has evolved on the basis of improved
experimental data to the following one in terms of the
new dimensionless variable of Churchill [11]:

ðu0v0Þþþ ¼ 0.7
yþ

10

� �3" #�8=7
þ exp

�1
0.436yþ

� �����
0
@

� 1

0.436aþ
1þ 6.95y

þ

aþ

� �����
�8=7
!�7=8

ð5Þ

Eq. (5) has the form of the generalized correlating equa-
tion of Churchill and Usagi [13], namely the power-
mean of two or more asymptotes or limiting solutions.
In this application it is made up of the following three
asymptotes:

ðu0v0Þþþ ¼ 0.0007ðyþÞ3 for yþ ! 0 ð6Þ

ðu0v0Þþþ ¼ 1� 1

0.436yþ
ffi e�1=0.436yþ

for 30 6 yþ 6 0.1aþ ð7Þ

ðu0v0Þþþ ! 1� 20.53
aþ

for yþ ! aþ ð8Þ

The third-power dependence of Eq. (6) was derived
some time ago by a number of different investigators,
perhaps first by Murphree [14] by means of a speculative
asymptotic analysis. For many years, alternative power
dependences had a considerable advocacy, as exempli-
fied by the work of Deissler [3,4] who first proposed
the equivalent of a second-power dependence and later
the equivalent of a fourth-power one. The viscous damp-
ing function of van Driest [15], which is often still
utilized, also implies a fourth-power dependence. This
controversy has now been resolved beyond question in
favor of the third power by the results of DNS. How-
ever, some uncertainty remains with respect to the value
of the coefficient due to current limits on the precision of
the DNS very near the wall.
The un-approximated form of Eq. (7) corresponds to

the semi-logarithmic dependence of u+ on y+, which was
derived by Prandtl [16] using mixing-length theory but
later by Millikan [17] by means of speculative dimen-
sional analysis and thereby without introducing a heu-
ristic quantity. The exponential approximation is just a
mathematical artifact to avoid singular behavior for
y+ 6 0.436 when this asymptote is incorporated in Eq.
(5) and thereby evaluated for y+ 6 0.436. The coefficient
of 0.436 is based on the recent experimental measure-
ments of the time-averaged velocity by Zagarola [18].
Barenblatt and Prostokushin [19] have asserted that a
power of y+ provides a better representation for the
velocity distribution than does a semi-logarithmic
expression, but this possible superiority for a narrow
range of y+ is countervailed with respect to its use in
Eq. (5) by singular behavior for both large and small
values of y+. The semi-logarithmic regime, which is
known on the basis of the idealizations in its derivation
as ‘‘the turbulent core near the wall’’, is valid only out-
side the boundary and ‘‘buffer’’ layers, that is for
y+ > 30, and inside the wake, that is for y+ < 0.1a+.
Accordingly, this regime is crowded out of existence
for a+ < 300, and Eq. (5) becomes increasingly inaccu-
rate for lesser values of y+. Because Eq. (5) becomes
inapplicability for a+ < 150 by virtue of the onset of
laminarization, this source of inaccuracy is limited to
150 6 a+ 6 300.
The form of Eq. (8) follows from the proportionality

of the velocity defect, uþc � uþ, to [1 � (y+/a+)]2, a
relationship first derived by Hinze [20] on the basis of
the irrefutable experimental evidence of the approach
of the eddy diffusivity to a finite value as y+! a+. The
coefficient 6.95 in Eq. (5) and the coefficient 20.53 in
Eq. (8) bear a one-to-one correspondence to each
other and to the limiting dimensionless value of the
amplitude of the ‘‘wake’’ at the centerline, namely,
uþc � 6.13� ð1=0.436Þ lnfaþg ¼ 1.51, as determined by
Zagarola, and were actually determined from that value.
Here, 6.13 is the value of the constant in the semi-loga-
rithmic representation of Zagarola for the time-averaged
velocity. This value, which does not appear explicitly in
Eq. (5), is consistent with the numerical values of u+

determined by means of Eqs. (3) and (4).
The term inside the absolute-value signs of Eq. (5)

was devised (see Churchill and Chan [12]), to encompass
the entire region of 30 6 y+ 6 a+ for a+ > 300 by inter-
polating between Eqs. (7) and (8). The absolute value is
specified to prevent the singularity of this combined term
for y+! 0 from persisting in Eq. (5). The �8/7-power-
mean of that combination and Eq. (6) results in an inter-
polation between these two expressions in the range of
0 6 y+ 6 0.1a+.
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MacLeod [21] speculated on the basis of formula-
tions for laminar flow that u+{y+,b+} for parallel-plate
channels might be identical to u+{y+,a+} for round
tubes in the fully turbulent as well as the fully laminar
regime. This speculation was confirmed experimentally
by Whan and Rothfus [22] for the extreme case of the
centerline velocity, but at the same time found to be in-
valid for the combined regimes of transition. Churchill
and Chan [12] inferred from the equivalent of Eq. (1)
that the analogy of MacLeod must apply to ðu0v0Þþþ

insofar as it does to u+. Although theoretical consider-
ations suggest that this analogy cannot be exact, it ap-
pears nonetheless to be accurate well within the
uncertainty of the best experimental data for both u+

and ðu0v0Þþþ. The extended analogy is critical to Eq.
(5) in two respects. First, the coefficient of Eq. (6) is
based on DNS for a parallel-plate channel, and second,
the exponent of �8/7 was chosen as the value of combin-
ing exponent that results in the best overall representa-
tion of the experimental data of Wei and Willmarth
[23] for u0v0 in a parallel-plate channel.
The accumulated empiricism inherent in Eq. (5), as

described here term by term is effectively less than that
involved in the implementation of the j–e, j–e-u0v0,
and LES models.
The evaluation of u+{y+,a+} and uþmfaþg from Eqs.

(3) and (4), respectively, by quadrature or by stepwise
integration of their finite-difference equivalents does
not introduce any empiricism or arbitrariness beyond
that of Eq. (5). Furthermore, the smoothing that is
inherent in the integrations by either method has the
fortuitous effect of reducing the effects of both the
functional and numerical uncertainty of Eq. (5) on
the numerically predicted values. These numerically
computed values fall entirely within the narrow band
of scatter of the experimental data of Zagarola, which
is not too surprising because these are the data that
served as the source of the coefficients 0.436 and 6.95.
On the other hand, the overall agreement is decisively
better (see, Churchill, et al. [24]) than that of Zagarola�s
own correlating equations because of the superiority in
form and greater scope of Eq. (5). Also, as implied by
the analogy of MacLeod, the numerical values of u{y+,
b+} and uþmfbþg, as calculated by Danov et al. [25], using
Eqs. (3) and (5) and the equivalent of Eq. (4), agree clo-
sely with the best experimental data for parallel-plate
channels. The success of the predictions also extends to
concentric circular annuli (see, Kaneda et al. [26]).
The mention of several precedents was deferred to

this point in order to have the above expressions as
points of reference. Kampé de Fériet [27] derived the
structural equivalent of Eqs. (2) and (3) in terms of
ðu0v0Þþ, as well as their analogues for a parallel-plate
channel, but without recognition of the analogy of
MacLeod. Pai [28,29] devised separate empirical expres-
sions for ðu0v0Þþ for both a parallel-plate and a round
tube, which, however, because of singularities, failed
when implemented to determine the friction factor. Bird
et al. [30] suggested that a correlating equation for the
turbulent shear stress might prove simpler than those
for the eddy viscosity or the mixing length, but did not
proceed any further.
3.3. The relationships between the new and old models

The general relationships, which follow, between the
new model and the classical ones, prove to be useful in
three senses. First, the classical ones are revealed to have
a more fundamental character than might have been ex-
pected on the basis of their heuristic origin, second, a
fundamental flaw is revealed in one of the classical ones
for the first time, and third, a mechanism is provided for
the salvage of results that have been determined and ex-
pressed in terms of the heuristic variables.
A comparison of the differential momentum balance

for a round tube in terms of the eddy viscosity ratio,
lt/l, with Eq. (2) reveals that

lt
l
¼ ðu0v0Þþþ

1� ðu0v0Þþþ ð9Þ

Since ðu0v0Þþþ is positive, finite, and less than unity for all
finite values of y+ and a+ in the regime of fully devel-
oped turbulence, lt/l must be finite and positive for
these conditions as well. More importantly, the eddy vis-
cosity is revealed to have the physical sense of the ratio
of the shear stress due to the turbulent fluctuations to
that due to the molecular motion, and, as such, to be
independent of its heuristic diffusional origin. (Bous-
sinesq [1], was either very insightful or lucky.) It further
follows that if Eqs. (1)–(8) were re-expressed in terms of
the eddy viscosity, they would be equally valid, although
more complex algebraically. Finally, all results in the lit-
erature expressed in terms of lt/l may be converted
quantitatively to values of ðu0v0Þþþ by means of Eq.
(9). This correspondence applies to a parallel-plate chan-
nel with smooth surfaces but not to annuli, for which the
eddy viscosity model is fatally flawed (see, for example,
Kaneda et al. [26]).
The equivalent analysis in terms of the mixing length

has a quite different outcome. Comparison of the differ-
ential momentum balance in terms of the mixing length
with Eq. (2) results in a relationship that may be ex-
pressed as

‘

a

� �
aþ

� 
2
¼ ð‘þÞ2 ¼ ðu0v0Þþþ

1� yþ

aþ

� �
1� ðu0v0Þþþ� �2 ð10Þ

The mixing length is seen from Eq. (10) to have a real,
although very complex, physical interpretation in terms
of the molecular and turbulent fluctuations, and thereby
to be independent of its heuristic origin as an analog of
the mean-free-path in a gas. However, in contrast to the
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eddy viscosity, the mixing length is unbounded at the
centerline, a critical aspect of behavior that has been
overlooked for 70 years. These discoveries with respect
to the mixing length are primarily of historical interest
because this variable is no longer widely used, whereas
the eddy viscosity still is. As an aside, Nikuradse [31]
developed an algebraic correlating equation for the mix-
ing length in terms of asymptotes, thereby anticipating
in one sense the concept of Eq. (5), but unfortunately
with functionally erroneous asymptotes in both limits.

3.4. The sensitivity of flow in a round tube to the

parameters of the algebraic model for the shear stress

The above description identifies the coefficient
a = 0.0007 of Eq. (6), the coefficient k = 0.436 of Eq.
(7), and the coefficient A = 6.95 and the exponent
n = �8/7 of Eq. (5) as the only explicit numerical empir-
icisms. Accordingly, these values are perturbed in the
ensuing analysis. The power-mean form, the use of the
absolute value, and the combination of the terms inside
the absolute value signs of Eq. (5), as well as the expo-
nential approximation of Eq. (7) are also arbitrary,
but the consequences of these functional approximations
a

c

Fig. 1. Calculated velocity distributions. (a) a+ =
may be shown to be insignificant relative to those of aris-
ing from the numerical values of the indicated coeffi-
cients and exponent. The unapproximated form of Eq.
(7) is itself arbitrary, but the experimental support for
the semi-logarithmic dependence of the time-averaged
velocity on y+, upon which this expression is based, is
very strong.
The computed values of u+ for a+ = 1000, 5000, and

50,000 corresponding to Re = 3.76 · 104, 2.27 · 105, and
2.80 · 106 are plotted in Fig. 1(a)–(c), respectively. The
corresponding values of uþm, as determined by the step-
wise simultaneous numerical integration of finite-differ-
ence representations of Eq. (2) and the differential
equivalent of Eq. (3), respectively, using a standard
version of Runge–Kutta, rather than from the integral
forms, are listed in Table 1.

3.4.1. The coefficient a
A value of 0.0007, as determined from the values of

ðu0v0Þþþ calculated by Rutledge and Sleicher [32] using
DNS, was chosen for Eq. (5), and thereby for the base
case to which the various perturbations are referred.
Test calculations were carried out for a = 0.00068 and
0.00072, corresponding to downward and upward
b

1000, (b) a+ = 5000, and (c) a+ = 50,000.



Table 1
The sensitivity of computed values of the mixed-mean velocity in a round tube to the parameters of the algebraic model for the shear
stress

a k A n uþm

a+ = 1000 (Re = 37,640)
0.00070 0.436 6.95 �8/7 18.82 (base case)
0.00068 (�2.8%) 18.91 (+0.48%)
0.00072 (+2.8%) 18.73 (�0.48%)

0.400 4.00 19.05 (+1.22%)
0.421 6.03 18.94 (+0.64%)

�9/8 (�22%) 18.92 (+0.53%)
�7/6 (+33%) 18.68 (�0.74%)

a+ = 5000 (Re = 226,900)
0.00070 0.436 6.95 �8/7 22.69 (base case)
0.00068 (�2.8%) 22.78 (+0.40%)
0.00072 (+2.8%) 22.59 (�0.44%)

0.400 4.00 23.24 (+2.42%)
0.421 6.03 22.94 (+1.10%)

�9/8 (�22%) 22.80 (+0.48%)
�7/6 (+33%) 22.54 (�0.66%)

a+ = 50,000 (Re = 2,801,000)
0.00070 0.436 6.95 �8/7 28.01 (base case)
0.00068 (�2.8%) 28.10 (+0.32%)
0.00072 (+2.8%) 27.91 (�0.36%)

0.400 4.00 29.03 (+3.04%)
0.421 6.03 28.45 (+1.57%)

�9/8 (�22%) 28.12 (+0.39%)
�7/6 (+33%) 27.86 (�0.43%)
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perturbations of 2.8%. The resulting reverse effects on uþm
were approximately 0.5%, 0.4%, and 0.3% for a+ =
1000, 5000, and 50,000, respectively, which indicates
almost a tenfold attenuation in uncertainty. The effect
of these perturbations on u+is barely distinguishable in
the scale of Fig. 1(a)–(c) for any value of y+. It may
be concluded that the uncertainty of this coefficient does
not affect the predictions of u+and uþm significantly.

3.4.2. The coefficient k and constant A

The values of k = 0.436 and A = 6.95 are those that
best represent the experimental data of Zagarola [18]
for u+ as a function of y+ and a+ in the turbulent core.
On that basis, they were chosen for Eq. (5), and thereby
for the base case herein. Rather than arbitrarily perturb
these values, which are interlinked, calculations were
carried out for values of k = 0.4 and A = 4.0, which best
represent the experimental data of Nikuradse [31], and
for k = 0.421 and A = 6.03 which best represent the very
recent experimental data of McKeon et al. [33], which
were obtained in the same apparatus as that used by
Zagarola. The values of uþm calculated using the con-
stants based on the data of Nikuradse are 1–4% higher,
and those based on the data of McKeon et al. are of the
order of 1% higher than those of the base case, but these
differences simply characterize the differences in the
three sets of measured values rather than the sensitivity
of the model. The differences in u+ are discernible in
Fig. 1(a)–(c), but again primarily reflect the different sets
of experimental measurements. At the same time, these
differences suggest that Eq. (5) is subject to possible
improvement by tweaking the values of k and A, if
and when results from DNS are extended to higher
values of Re, or better experimental data for u and/or
u0v0 are obtained.

3.4.3. The combining exponent n

Perturbations of �22% and +33% in the combining
exponent are seen in Table 1 to be attenuated almost
two orders of magnitude in the predictions of uþm, and
in Fig. 1(a)–(c) to be indistinguishable in the predictions
of u+. This result, which might have been expected be-
cause of the well-known numerical insensitivity of the
generalized correlating of Churchill and Usagi [13] to
the magnitude of the combining exponent, indicates that
the value of n = �8/7 is not a significant source of uncer-
tainty in the predictions of u+ and uþm.

3.4.4. Overall assessment

The overall conclusion from the values listed in Table
1 and plotted in Fig. 1(a)–(c) is that the values of pre-
dicted by Eqs. (2) and (3) are effectively insensitive to
the numerical empiricisms of Eq. (5), and that, although
improved experimental measurements of u+ and/or



S.W. Churchill et al. / International Journal of Heat and Mass Transfer 48 (2005) 5488–5503 5495
ðu0v0Þþþ, or more precise and extended values by DNS

may suggest numerical tweaking of the coefficients and
exponents, the resulting predictions of u+ and uþm are un-
likely to be changed significantly. This conclusion does
not extend to the exponential dependence itself, which
reflects the postulated semi-logarithmic dependence of
u+, or to the combination of terms inside the absolute-
value signs of Eq. (5), neither of which have been tested
herein.

3.5. The sensitivity of flow in a parallel-plate channel

to the parameters of the algebraic model for the

shear stress

Eqs. (1)–(3) and (6) are exact for a parallel-plate chan-
nel if the dimensionless half-width of the channel, b+, is
substituted for a+ and Z = 1 � y/b for R = 1 � y/b.
Also, Eqs. (6)–(8) are directly applicable insofar as the
extended analogy of MacLeod is valid. Accordingly the
computed values of u+ are not plotted herein because
they are necessarily identical to those in Fig. 1 for a
round tube. However, because of the different cross-sec-
tion, Eq. (4) must be replaced by

2

f

� �1=2
	 uþm 	 1

b

Z b

0

udy ¼ bþ

3

Z 1

0

½1� ðu0v0Þþþ�dZ3

ð11Þ

The test calculations for parallel-plate channels were
carried out for the same perturbations as for round
tubes, but for b+ = 500, 2500, and 25,000 on the pre-
sumption that the same equivalent diameter might
result in almost the same values of uþm and Re. The com-
puted values of uþm and the associated perturbations
confirmed the numerical validity of this conjecture so
closely that listing the detailed values would be redun-
dant. All in all, the same conclusions with respect to sen-
sitivity and accuracy as for a round tube appear to be
applicable.

3.6. The sensitivity of flow in circular concentric annuli

to the parameters of the algebraic model

for the shear stress

Kanada et al. [26] adapted the formulation for turbu-
lent flow in a round tube to circular concentric annuli by
applying it separately to the inner and outer regions as
defined by a1 6 r 6 amax and amax 6 r 6 a2. Here amax
is the radial location of the maximum in the time-aver-
aged velocity. As contrasted with its linear variation in
a round tube and in a parallel-plate channel, the radial
variation of the total shear stress in a concentric circular
annulus is given by a non-linear theoretical expression
that incorporates a0, the radial location of the zero in
the total shear stress. It is necessary to utilize empirical
correlating equations for amax and a0 as functions of
a1/a2. The following purely empirical one of Kays and
Leung [34] for amax and of Rehme [35] for a0 were used
as the base case for the calculations herein:

amax � a1
a2 � amax

¼ a1
a2

� �0.343
ð12Þ

and

a0 � a1
a2 � a0

¼ a1
a2

� �0.386
ð13Þ

Because Eqs. (12) and (13) have no theoretical basis, the
exact theoretical expression for amax = a0 in laminar
flow, namely

amax
a1

� �2
¼ a0

a1

� �2
¼ ½ða2=a1Þ2 � 1�
2 lnfa2=a1g

ð14Þ

was used as a test of sensitivity rather than perturbations
of the empirical exponents.
The adaptation of model Eq. (5) for the inner region

incorporates the constant A = 6.95 in the outer regions
of annuli this constant is replaced by the variable value
that results in matching of the two expressions for u+ at
r = amax for each condition.
Test calculations were carried out for values of 1000,

5000, and 50,000 for aþ2 � aþ1 , the hydraulic radius of an
annulus. Since uþm and Re ¼ 2ðaþ2 � aþ1 Þuþm proved to be
nearly the same in the limits of a1/a2 = 0, corresponding
to a round tube, and a2/a1! 1, corresponding to a par-
allel-plate channel, it was speculated that these quanti-
ties might be relatively independent of a1/a2. Since the
numerical calculations for a round tube and a parallel-
plate channel were presumed to provide an adequate test
of the sensitivity to the coefficients a, k, A, and n, these
values were not perturbed.
The computed values in Table 2 indicate that invari-

ance of uþm and Re4b for a fixed value of aþ2 � aþ1 is
achieved qualitatively but not quantitatively for inter-
mediate aspect ratios. The computed values of amax and
a0 are expressed in terms of (amax � a1)/(a2 � a1) and
(a0 � a1)/(a2 � a1) in order to permit inclusion of values
for a1/a2 = 1 and a1/a2 = 0 in the table. The near-equality
for a1/a2 = 0.5 of the predictions of amax and a0 by Eqs.
(12) and (13), and their small deviations from the predic-
tions of Eq. (14), as compared to the corresponding re-
sults for a1/a2 = 0.1 may be explained by the approach
to parallel-plate behavior as a1/a2 increases. The corre-
sponding changes in uþm are difficult to explain. For exam-
ple, uþm decreases significantly in response to only a small
increase in (amax � a1)/(a2 � a1) and (a0 � a1)/(a2 � a1)
for a1/a2 = 0.5, but increases somewhat less for the larger
increases in (amax � a1)/(a2 � a1) and (a0 � a1)/(a2 � a1)
for a1/a2 = 0.1. Such seemingly anomalous behavior sug-
gests that the perturbation produced by the use amax and
a0 for laminar flow may be too drastic to be used as a
measure of sensitivity.



Table 2
The sensitivity of computed values of the mixed-mean velocity in concentric circular annuli to parameters of the algebraic model for the
shear stress

amax � a1
a2 � a1

a0 � a1
a2 � a1

ðaþ2 � aþ1 Þ 1000 5000 50,000

a1/a2! 1.0 0.5 0.5 uþm 18.61 22.56 27.90
Re4b 37,320 225,600 2,790,000

a1/a2 = 0.5
Eqs. (12) and (13) 0.441 0.434 uþm 18.17 22.00 27.11

Re4b 36,340 220,000 2,711,000
Eq. (14) 0.471 0.471 uþm 16.89 20.17 25.19

Re4b 33,780 201,700 2,519,000

a1/a2 = 0.1
Eqs. (12) and (13) 0.311 0.292 uþm 15.86 19.26 23.77

Re4b 31,720 192,600 2,377,000
Eq. (14) 0.404 0.404 uþm 16.29 20.80 26.29

Re4b 32,580 208,000 2,629,000

a1/a2! 0 0 0 uþm 18.82 22.69 28.01
Re4b 37,640 226,900 2,801,00
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4. Forced convection

4.1. Basic formulations for a round tube

The thermal analogue of Eq. (1) for a round tube is

j
jw

½1� ðT 0v0Þþþ� ¼ dT
þ

dyþ
ð15Þ

Here, T+ 	 k(swq)
1/2(Tw � T)/ljw and ðT 0v0Þþþ 	 qc�

T 0v0=j. The latter quantity may be recognized as the frac-
tion of the local heat flux density at any radius that is
due to the turbulent fluctuations. Since j/jw would not
be expected to differ greatly from s/sw, scaling in terms
of the latter is suggested. The chosen option is the
replacement of j/jw by (1 + c)s/sw, which for a round
tube becomes (1 + c)R. The quantity c may be noted
to represent the fractional deviation of the heat flux
density distribution from that of the shear stress distri-
bution. Eq. (15) is thereby converted to

Tþ ¼ aþ

2

Z 1

R2
ð1þ cÞ½1� ðT 0v0Þþþ�dR2 ð16Þ

Eq. (16) is more complex than Eq. (3), not only explicitly
by virtue of the factor 1 + c, but also implicitly by virtue
of the dependence of ðT 0v0Þþþon the Prandtl number
Pr = cl/k. For a round tube and uniform heating, the
only thermal boundary condition to be considered
herein,

1þ c ¼ 1

R2

Z R2

0

u
um

� �
dR2 ð17Þ

Eq. (17) reveals that c is a function only of the velocity
field and thereby of ðu0v0Þþþ, and that it is independent
of the Prandtl number. Values of c computed from Eq.
(17) by Yu et al. [36] and others confirm the expectation
of restrained behavior but at the same time indicate that
this quantity is not negligible with respect to unity as
was postulated explicitly or implicitly in many of the
early theoretical analyses of convection. The functional
behavior of c, as given by Eq. (17), has the fortuitous
consequence of allowing the integration of T+, weighted
by uþ=uþm, over the cross-section to obtain Tþ

m, to be
carried out by parts, thereby resulting in the following
single integral for Nu:

2aþ

Nu
	 Tþ

m 	
Z 1

0

Tþ uþ

uþm

� �
dR2

¼ aþ

4

Z 1

0

ð1þ cÞ2½1� ðT 0vÞþþ�dR4 ð18Þ

The next step would appear to be the development of a
predictive expression for ðT 0v0Þþþ analogous to Eq. (5)
for ðu0v0Þþþ. However, it again proves to be convenient
to introduce scaling in terms of the flow, namely the
replacement of 1� ðT 0v0Þþþ by n½1� ðu0v0Þþþ�, thereby
converting Eqs. (16) and (18) to

Tþ ¼ aþ

2

Z 1

R2
ð1þ cÞn½1� ðu0v0Þþþ�dR2 ð19Þ

and

2aþ

Nu
	 Tþ

m 	
Z 1

0

Tþ uþ

uþm

� �
dR2

¼ aþ

4

Z 1

0

ð1þ cÞ2n½1� ðu0vÞþþ�dR4 ð20Þ

with the expectation that functional behavior of n is
more restrained than that of ðT 0v0Þþþ.
From a comparison of Eq. (19) and its equivalent in

terms of the eddy conductivity ratio, kt/k, it may be
shown that
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kt
k
¼ ðT 0v0Þþþ

1� ðT 0v0Þþþ ð21Þ

It follows from Eqs. (9) and (21) that

n 	 1� ðT 0v0Þþþ

1� ðu0v0Þþþ ¼ ðl þ ltÞk
ðk þ ktÞl

¼ cðl þ ltÞ=ðk þ ktÞ
cl=k

¼ PrT
Pr

ð22Þ

and hence that

Tþ ¼ aþ

2

Z 1

R2
ð1þ cÞ PrT

Pr
½1� ðu0v0Þþþ�dR2 ð23Þ

and

2aþ

Nu
	 Tþ

m ¼ aþ

4

Z 1

0

ð1þ cÞ2 PrT
Pr

½1� ðu0v0Þþþ�dR4 ð24Þ

The quantity PrT, as defined by Eq. (22) in terms of the
eddy viscosity and the eddy conductivity, is known as
the total Prandtl number. However, by virtue of its rep-
resentation in terms of ðu0v0Þþþand ðT 0v0Þþþ it may be
recognized as independent of the heuristic origins of lt
and kt.
Most experimental data and empirical equations for

turbulent convection are expressed in terms of the turbu-
lent Prandtl number Prt 	 clt/k rather than in terms of
PrT. These values and expressions could be converted to
PrT by means of the relationship

Pr
PrT

¼ 1þ Pr
Prt

� 1
� �

ðu0v0Þþþ ð25Þ

but it is more convenient to re-express Eqs. (23) and (24)
in terms of Prt. It follows from Eqs. (9) and (21) that

Prt
Pr

	 clt=kt
cl=k

¼ ðu0v0Þþþ

ðT 0v0Þþþ
1� ðT 0v0Þþþ

1� ðu0v0Þþþ

 !
ð26Þ

Replacing ðT 0v0Þþþ in Eqs. (16) and (18) by virtue of Eq.
(26) results in

Tþ ¼ aþ

2

Z 1

R2

ð1þ cÞdR2

1þ Pr
Prt

ðu0v0Þþþ

1�ðu0v0 Þþþ

� � ð27Þ

and

2aþ

Nu
	 Tþ

m ¼ aþ

4

Z 1

0

ð1þ cÞ2 dR4

1þ Pr
Prt

ðu0v0 Þþþ

1�ðu0v0Þþþ

� � ð28Þ

Eqs. (27) and (28) appear to be more complex than Eqs.
(16) and (18), but are much more convenient for numer-
ical calculations because of the well-correlated behavior
of ðu0v0Þþþ, per Eq. (5), and the restrained variance of
Prt/Pr. They are slightly more convenient than Eqs.
(23) and (24), despite the greater variance of Prt relative
to PrT in that they avoid the determination of PrT and
display the limiting behavior for Pr = 0 and the special
behavior for Prt = Pr that Churchill and Zajic [37] used
to devise an algebraic predictive equation for Nu. Eqs.
(15)–(28) are all exact, but empiricism is invoked by
the use of Eq. (5) for ðu0v0Þþþ and the correlating equa-
tion utilized for Prt or PrT.
Yahkot et al. [38] and Elperin et al. [39] used renor-

malization group theory to derive an algebraic theoretical
expressions for PrT/Pr as a function of Pr and lT/l, but
neither of their predictions agree well with the best
experimental data for some ranges of Pr and lT/l,
apparently as a consequence of idealizations made in
the derivation. Accordingly, as discussed by Kays [40]
and Churchill [41] empirical correlating equations are
currently the expressions of choice for Prt.
Finite-difference solutions for the Nusselt number

using the differential equivalents of Eqs. (3), (4) and
(17), the equivalent of Eq. (17) for uniform wall-temper-
ature, (27) and (28), together with Prt from the following
simple expression adapted from Jischa and Rieke [42]:

Prt ¼ 0.85þ
0.15

Pr
ð29Þ

were shown by Churchill and Zajic [37] to be in agree-
ment with experimental data for all Re, all Pr, and both
thermal boundary conditions within their scatter. Simi-
lar agreement was demonstrated by Danov et al. [25]
for parallel-plate channels with uniform equal heating
and different uniform wall temperatures, and by Yu
et al. [43–45] for annuli of different aspect ratios for
various combinations of uniform heating, uniform cool-
ing , and uniform wall-temperatures. These comparisons
indicate that the predictions of the new model are equal
to or better than all previous ones and perhaps adequate
for most practical purposes. However, in all cases, owing
to the considerable scatter and the limited scope of the
experimental data, these comparisons fall short of a crit-
ical test of accuracy. That shortcoming prompted the
following aspect of the current work.

4.2. The sensitivity of convection in a round tube to the

parameters of the algebraic model for the shear stress

Numerical calculations for T+ and Nu were carried
out for the base case using Eqs. (5) and (29), and
finite-difference representations for the differential coun-
terparts of Eqs. (3), (4), (17), (27) and (28), and then for
the same parametric values as for uþm in Tables 1 and 2,
but additionally for a series of values of Pr and for two
other expressions for Prt, namely a fixed value of unity,
which was often postulated in early models for turbulent
convection, and a semi-theoretical correlating equation
of Notter and Sleicher [46] with a dependence on
ðu0v0Þþþ as well as on Pr.
In the interests of economy and practicality, the com-

puted values of T+ for a round tube are not presented
and the computed values of Nu are listed in Table 3 only
for Pr = 0, which identifies the lower limiting value of



Table 3
The sensitivity of computed values of the Nusselt number in a uniformly heated round tube to parameters of the algebraic models for
the turbulent shear stress and the turbulent Prandtl number

a k A n Prt Pr

0 0.01 0.7 100

a+ = 1000
0.00070 0.436 6.95 �8/7 J&R 6.675 7.927 88.53 702.5
0.00068 6.679 7.931 88.15 696.1
0.00072 6.671 7.924 88.90 708.9

0.400 4.00 6.727 8.036 87.73 701.2
0.421 6.03 6.985 7.941 87.96 701.9

�9/8 6.678 7.929 88.06 701.5
�7/6 6.671 7.925 89.13 703.9

N&S 6.675 7.363 89.69 719.1
1.0 6.675 9.486 82.18 663.9

a+ = 5000
0.00070 0.436 6.95 �8/7 J&R 6.932 12.95 371.5 3480
0.00068 6.936 12.95 370.1 3449
0.00072 6.929 12.94 372.8 3511

0.400 4.00 6.984 13.11 363.2 3470
0.421 6.03 6.943 12.94 367.3 3476

�9/8 6.936 12.95 369.8 3475
�7/6 6.927 12.94 373.5 3487

N&S 6.932 11.56 368.7 3572
1.0 6.932 19.70 341.2 3285

a+ = 50,000
0.00070 0.436 6.95 �8/7 J&R 7.130 51.84 3006 34,290
0.00068 7.133 51.85 2997 33,990
0.00072 7.128 51.83 3014 34,590

0.400 4.00 7.182 51.07 2901 34,150
0.421 6.03 7.143 51.27 2958 34,230

�9/8 7.134 51.85 2994 34,240
�7/6 7.126 51.82 3020 34,360

N&S 7.130 63.26 2969 35,090
1.0 7.130 98.05 2732 32,320
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Nu, Pr = 0.01, which is representative of liquid metals,
Pr = 0.7, which corresponds to air, and Pr = 100, the
largest value for ordinary fluids. The abbreviation J&R
designates the use of Eq. (29), the slightly modified cor-
relating equation of Jischa and Rieke [42], for Prt, and
N&S the use of the equation of Notter and Sleicher [46].
The perturbations in the coefficients of Eq. (5) pro-

duce almost the same fractional perturbations in Nu

for large values of Pr and lesser ones for small values
of Pr that they do in uþm. The same correspondence
was observed for T+ and u+, hence plots corresponding
to Fig. 1 are not shown. However, the computed values
of Nu showed a strong and what at first glance appears
to be an anomalous sensitivity to the expression used for
Prt. The values obtained from Eq. (29) are presumed to
be more accurate, which is why it was chosen as the base
case, but the deviations suggest the need for further mea-
surements or theoretical calculations for this quantity
(also see, Kays [40] and Churchill [41]).
Computed values of Nu for a parallel-plate channel
and for the inner surface of concentric circular annuli
heated uniformly and equally on both surfaces are listed
in Tables 4 and 5, respectively. For the annuli, the term
‘‘uniform heating’’ designates jw1a1 = jw2a2 rather than
jw1 = jw2. The imposed perturbations in Table 4 are
roughly the same as those in Table 3, except for the ab-
sence of results for the correlating equation of Notter
and Sleicher. On the other hand, only a perturbation
in a0 and amax is imposed in Table 5.
The fractional perturbations for a parallel-plate

channel may be deduced from Table 4 to be nearly the
same as those for a round tube. The most noteworthy re-
sult of Table 5 is that the equivalent-diameter concept
holds very closely for a round tube and a parallel-plate
channel for large values of Pr, holds fairly closely for
Pr = 0.7, and fails decisively for smaller values of Pr.
For annuli the equivalent-diameter concept necessar-

ily holds for Pr! 1, holds crudely for Pr = 100, but



Table 4
The sensitivity of computed values of the Nusselt number in a uniformly and equally heated parallel-plate channel to parameters of the
algebraic models for the turbulent shear stress and the turbulent Prandtl number

a k A n Prt Pr

0 0.01 0.7 100

2b+ = 1000
0.00070 0.436 6.95 �8/7 J&R 10.43 11.47 90.20 704.3
0.00068 10.44 11.47 89.82 697.8
0.00072 10.43 11.46 90.58 710.6

0.400 4.00 10.52 11.64 90.86 703.6
0.421 6.03 10.45 11.50 90.08 703.8

�9/8 10.44 11.47 89.73 703.2
�7/6 10.43 11.46 90.81 705.6

1.0 10.43 12.80 83.86 665.6

2b+ = 5000
0.00070 0.436 6.95 �8/7 J&R 10.77 16.11 375.4 3484
0.00068 10.77 16.11 374.0 3452
0.00072 10.76 16.10 376.7 3515

0.400 4.00 10.85 16.50 371.9 3477
0.421 6.03 10.79 16.16 372.7 3480

�9/8 10.77 16.11 373.7 3478
�7/6 10.76 16.10 377.6 3490

1.0 10.77 22.52 275.2 3234

2b+ = 50,000
0.00070 0.436 6.95 �8/7 J&R 11.01 54.43 3027 34,310
0.00068 11.01 54.44 3018 34,010
0.00072 11.00 54.42 3036 34,610

0.400 4.00 11.09 55.00 2951 34,200
0.421 6.03 11.03 54.25 2988 34,260

�9/8 11.01 54.44 3015 34,260
�7/6 11.00 54.42 3041 34,380

1.0 11.01 109.3 2752 32,340
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fails utterly for lower values, which do not vary mono-
tonically with a1/a2. Calculated values of Nu for a round
tube are absent from Table 5 because heating on both
surfaces is a non-sequitur. Just as for flow, the computed
values of Nu are quite sensitive to the expressions used
for a0 and amax, and the trends with aþ2 � aþ1 , a1/a2, Pr,
and a1/a2 are inexplicable. The same conclusions as for
uþm are applicable for Nu.
5. Summary and conclusions

This analysis has three different aspects. The first is a
description and critique of the modeling of turbulent
flow and convection by means of algebraic expressions
for the turbulent shear stress and the turbulent heat flux
density. The second is the identification of the empiri-
cisms and arbitrary choices in the models for these two
quantities. The third is the numerical evaluation of
the sensitivity of numerical predictions of turbulent
flow and convection to these empiricisms and arbitrary
choices. The summary and conclusions follow that
division.

5.1. Summary of characteristics of the new algebraic

modeling for turbulent flow

The first and most unique characteristic of the new
modeling for turbulent flow is the avoidance of the
introduction of a heuristic quantity such as the eddy vis-
cosity or the mixing length. All prior models except for
the j–e-u0v0 one posit such a quantity.
A second and equally important characteristic is the

choice of ðu0v0Þþþ ¼ �qu0v0=s, the local fraction of the
total shear stress due to the turbulence as a variable.
This choice leads to simpler and more transparent for-
mulations than any prior ones. An example is the
expression of u+{y+} as a simple integral, and the recog-
nition that the double integral for uþm 	 ð2=f Þ1=2 can be
integrated by parts resulting in a single integral for uþm
with an integrand identical to that for u+. Integration
by parts is possible for the formulation in terms of the



Table 5
The sensitivity of computed values of the Nusselt number for the inner surface in concentric circular annuli with uniform and equal
heating on both surfaces to parameters of the algebraic model for the shear stress

aþ2 � aþ1 Re
amax � a1
a2 � a1

a0 � a1
a2 � a1

Pr

0 0.01 0.7 10

a1/a2! 1.0 0.5 0.5
1000 37,220 10.43 11.47 90.20 704.3
5000 225,600 10.77 16.11 375.4 3484
50,000 2,790,000 11.01 54.43 3027 34310

a1/a2 = 0.5
Eqs. (12) and (13) 0.441 0.434
1000 36340 9.805 10.60 81.43 691.2
5000 220,000 9.951 14.31 344.6 3416
50,000 2,711,000 10.05 48.26 2838 33660
Eq. (14) 0.471 0.471
1000 37,980 10.01 11.41 95.64 698.7
5000 203,700 10.20 18.44 403.9 3455
50,000 2,519,000 10.30 70.86 3280 34060

a1/a2 = 0.1
Eqs. (12) and (13) 0.311 0.292
1000 31,720 15.39 16.27 81.77 694.4
5000 192,600 15.44 20.63 361.8 3428
50,000 2,377,000 15.46 68.40 3191 34000
Eq. (14) 0. 404 0.404
1000 32,580 15.25 16.23 96.26 707.8
5000 208,000 15.25 20.40 381.4 3451
50,000 2,629,000 15.25 58.22 3029 33880
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eddy viscosity but was never recognized because of its
greater complexity. The relationship between the eddy
viscosity ratio and ðu0v0Þþþ in a round tube reveals that
the former is a function only of the latter and therefore
independent of its heuristic diffusional origin. The rela-
tionship between the mixing length and ðu0v0Þþþ in a
round tube reveals that the former is a function only
of the latter and therefore that it is independent of its
heuristic origin as an analogue, but also that it is singu-
lar at the centerline, a fundamental flaw that has appar-
ently been overlooked for 70 years.
The correlating equation that is required for ðu0v0Þþþ

incorporates some empiricism and arbitrariness, but less
than that for the j–e, j–e-u0v0, and LES models. An
inherent characteristic of the correlating equation for
ðu0v0Þþþ is the implicit postulate of the validity of the
powerful but often overlooked analogy of MacLeod
and its extension to u0v0 by Churchill and Chan.
The ordinary-differential formulations for u+ and uþm

in terms of ðu0v0Þþþ are readily solved simultaneously to
any required degree of accuracy by elementary finite-dif-
ference methods. This procedure is so simplistic that it
may be incorporated in computational algorithms for
processes such as convection or reaction.
The modeling in terms of ðu0v0Þþþ is directly applica-

ble to a parallel-plate channel and is readily extended to
concentric circular annuli, albeit with some additional
empiricism because the locations of the maximum in
the time-mean velocity and the zero in the total shear
stress are not known a priori. Because these two
locations are not the same, the eddy viscosity model
fails for annuli but the shear-stress model remains
valid.

5.2. Summary of characteristics of the new algebraic

modeling for turbulent convection

The expression of the time-averaged differential en-
ergy balance in terms of ðT 0v0Þþþ 	 qcT 0v0=j, which
may be interpreted physically as the fraction of the total
transport of energy due the turbulence, has advantages
for convection equivalent to but subtly different from
those for ðu0v0Þþþ for flow. Only the differing character-
istics are noted here.
The primary differences include the dependence on

the Prandtl number as a parameter, the possibility of dif-
ferent thermal boundary conditions, and the non-linear
dependence of the local heat flux density on the distance
from the wall as well as on the Prandtl number and the
thermal boundary condition. Only uniform heating at
the wall is considered herein but a uniform wall-temper-
ature and, for parallel-plate channel and annuli, mixed
thermal boundary conditions are readily encompassed
by the algebraic modeling.
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The introduction of the quantity c = (jsw/jws) � 1 =
(j/jwR) � 1 in place of the heat flux density j/jw simplifies
the modeling from a numerical point of view because c is
a perturbation. For uniform heating of a round tube or
parallel-plate channel, c is a function only of uþ=uþm and
thereby of ðu0v0Þþþ, and that particular dependence for-
tuitously permits the integration of the double integral
for Nu by parts.
A consequence of the modeling in terms of ðu0v0Þþþ

and ðT 0v0Þþþ is the discovery of an exact expression for
the turbulent Prandtl number ratio Prt/Pr 	 (clt/kt)/
(cl/k) in terms of these two quantities, which demon-
strates that this sometimes maligned quantity is actually
well-defined in physical terms and independent of the
heuristic origin of its components.
The replacement of ðT 0v0Þþþ by Prt/Pr and ðu0v0Þþþ

by virtue of this relationship results in improved dif-
ferential and integral expressions for T+ and
Tþ
m 	 2aþ=Nu by virtue of the restrained variance of

Prt/Pr.
Expression of the integral formulations for T+ and

Nu in terms of Prt/Pr bestows a subtle bonus in that
an asymptotic expression for Pr! 0 as well as a special
expression for Pr = Prt is revealed.
An empirical relationship for Prt/Pr as a function of

Pr and ðu0v0Þþþ is required for numerical calculations.
The uncertainty of this relationship also affects all other
forms of modeling for convection.
Just as for flow, the differential expressions for c, T+,

and Nu can be solved readily and simultaneously by ele-
mentary finite-difference methods. Such calculations are
more efficient computationally than numerical evalua-
tion of the integral forms. Of course, T+, Nu, and, except
for uniform heating, c are functions of Pr, and the calcu-
lations must be repeated for each value thereof. The
integral forms have a supplemental value in that they
provide better insight.

5.3. Summary of findings on sensitivity

The coefficient a for the third-power dependence of
ðu0v0Þþþ on y+ near the wall, the constant A and coeffi-
cient k for the semi-logarithmic regime of u+{y+}, the
combining-exponent n of the power-mean of these terms
are identified as principal sources of uncertainty in the
correlating equation for ðu0v0Þþþ. For concentric circular
annuli the correlating equations for a0 and amax are an
additional source of empiricism in the predictions for
flow. For convection, the correlating expression for Prt
is the only added source of uncertainty. The test calcula-
tions for arbitrary perturbations of the coefficient a and
the combining-exponent indicate that the predictions of
u+, uþm, and Nu are very insensitive to the perturbations,
and that the probable uncertainty in these quantities
does not effect the accuracy of the predictions
significantly.
Rather than arbitrarily perturbing the von Kármán
coefficient k of the semi-logarithmic representation for
the time-averaged velocity ‘‘in the turbulent core near
the wall’’ and the constant A, which is a measure
of the magnitude of the wake, the predictions of u+,
uþm, and Nu were compared for the values of k and A

as determined from three different sets of experiments.
The predictions of uþm and Nu differed in the range of
1–3%. This is effectively a measure of the difference
in the experimental determinations, but it leads to
two conclusions regarding the coefficients, first, a sensi-
tivity of that order of magnitude, and second, the need
for definitive experiments or numerical solutions by
DNS or the equivalent. An alternative conclusion is
that a better model needs to be formulated for this
regime.
The sensitivity to the empirical expression used for

a0, amax, and Prt was also examined by comparing the
predictions for alternative choices of these expressions.
In the case of a0 and amax the arbitrary alternative was
the theoretical solution for laminar flow. The rather sig-
nificant sensitivity suggests that efforts should be made
to obtain improved experimental data and/or correlat-
ing equations for all three of these quantities.

5.4. Overall conclusions

Algebraic modeling of turbulent flow in terms of the
shear stress and of turbulent convection in terms of the
turbulent heat flux density is shown to be simpler than
modeling in terms of the eddy diffusivity and the eddy
conductivity. As a supplement to prior comparisons of
the predicted values with scattered experimental data
the predictions of u+, uþm, and Nu are shown to be insen-
sitive to most of the empirical coefficients and exponents
of the correlating equations for the turbulent shear stress
ðu0v0Þþþ. The principal sources of uncertainty in the
predictions appear to be those associated with the
empirical expressions for the time-averaged velocity in
‘‘the turbulent core near the wall’’, the turbulent Prandtl
number, and the locations of the maximum in the time-
averaged velocity and the zero in the total shear stress.
Further experimental work or extension of SDS to re-
solve these particular uncertainties appears to be worth-
while. Pending such improvements, the combination of
Eqs. (2), (4), and (5) for flow in round tubes; the combi-
nation of Eq. (11) with Eqs. (2) and (5) in terms of b+ for
flow in parallel-plate channels; and the complete model
described by Kanada et al. [26] for flow in annuli, appear
to be more reliable than any alternatives. Likewise, the
combination of Eqs. (5), (17), (28), and (29) for convec-
tion for convection in a round tube is equally superior,
as are the equivalents for parallel-plate channels and
annuli with all combinations of uniform heating and
uniform wall-temperatures, as described by Yu et al.
[43–45].
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visqueux incompressible entre deux plaques parallél indef-
inies, La Houille Blanche 3 (1948) 509–517.

[28] S.I. Pei, On the flow between parallel plates, J. Appl. Mech.
20 (1953) 109–114.

[29] S.I. Pei, On turbulent flow in circular pipe, J. Franklin Inst.
236 (1953) 337–352.

[30] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport
Phenomena, John Wiley & Sons, New York, 1960, p. 160.

[31] J. Nikuradse, Gesetzmassigkeiten der turbulenten Strö-
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